The flagellar motor of Caulobacter crescentus generates more torque when a cell swims backward

نویسندگان

  • Pushkar P. Lele
  • Thibault Roland
  • Abhishek Shrivastava
  • Yihao Chen
  • Howard C. Berg
چکیده

Caulobacter crescentus, a monotrichous bacterium, swims by rotating a single right-handed helical filament. CW motor rotation thrusts the cell forward 1, a mode of motility known as the pusher mode; CCW motor rotation pulls the cell backward, a mode of motility referred to as the puller mode 2. The situation is opposite in E. coli, a peritrichous bacterium, where CCW rotation of multiple left-handed filaments drives the cell forward. The flagellar motor in E. coli generates more torque in the CCW direction than the CW direction in swimming cells 3,4. However, monotrichous bacteria including C. crescentus swim forward and backward at similar speeds, prompting the assumption that motor torques in the two modes are the same 5,6. Here, we present evidence that motors in C. crescentus develop higher torques in the puller mode than in the pusher mode, and suggest that the anisotropy in torque-generation is similar in two species, despite the differences in filament handedness and motor bias (probability of CW rotation).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protease susceptibility of the Caulobacter crescentus flagellar hook-basal body: a possible mechanism of flagellar ejection during cell differentiation.

When motile swarmer cells of Caulobacter crescentus differentiate into sessile stalked cells, the flagellum is ejected. To elucidate the molecular mechanism of the flagellar ejection, flagellar hook-basal body (HBB) complexes from C. crescentus were purified and characterized. The purified HBBs were less stable against acidic pH or protease treatment than HBBs of Salmonella typhimurium, support...

متن کامل

Helical motion of the cell body enhances Caulobacter crescentus motility.

We resolve the 3D trajectory and the orientation of individual cells for extended times, using a digital tracking technique combined with 3D reconstructions. We have used this technique to study the motility of the uniflagellated bacterium Caulobacter crescentus and have found that each cell displays two distinct modes of motility, depending on the sense of rotation of the flagellar motor. In t...

متن کامل

Role of the flagellum in cell-cycle-dependent expression of bacteriophage receptor activity in Caulobacter crescentus.

The rate of adsorption of Caulobacter bacteriophage phi CbK to Caulobacter crescentus is dependent on the structural integrity of the flagellum. Cells lacking part or all of the flagellum because of either mutation or mechanical shear were defective in adsorption, and the extent of the defect in adsorption reflected the amount of flagellar structure missing. Maximal adsorption rates were also d...

متن کامل

An Element of Determinism in a Stochastic Flagellar Motor Switch

Marine bacterium Vibrio alginolyticus uses a single polar flagellum to navigate in an aqueous environment. Similar to Escherichia coli cells, the polar flagellar motor has two states; when the motor is counter-clockwise, the cell swims forward and when the motor is clockwise, the cell swims backward. V. alginolyticus also incorporates a direction randomization step at the start of the forward s...

متن کامل

Genetic mapping of genes required for motility in Caulobacter crescentus.

Mutations in more than 30 genes affect motility in Caulobacter crescentus. We have determined the chromosomal map locations for 27 genes involved in flagellar morphogenesis (fla), three genes involved in flagellar function (mot), and three genes that have a pleiotropic effect on both motility and bacteriophage resistance (ple). Three multigene clusters have been detected at widely separated chr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2016